Variations in urban land surface temperature intensity over four cities in different

0


  • 1.

    Masoudi, M. & Tan, P. Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 184, 44–58 (2019).

    Article 

    Google Scholar
     

  • 2.

    Zhang, Y. & Sun, L. Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two Canadian urban areas. Int. J. Appl. Earth Obs. Geoinf. 75, 171–181 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Yang, J. et al. Investigating the diversity of land surface temperature characteristics in different scale cities based on local climate zones. Urban Clim. 34, 100700 (2020).

    Article 

    Google Scholar
     

  • 4.

    Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1982).

    ADS 

    Google Scholar
     

  • 5.

    Ayanlade, A. Variations in urban surface temperature: An assessment of land use change impacts over Lagos metropolis. Weather 72, 315–319 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Ayanlade, A. Variation in diurnal and seasonal urban land surface temperature: Landuse change impacts assessment over Lagos metropolitan city. Model. Earth Syst. Environ. 2, 193. https://doi.org/10.1007/s40808-016-0238-z (2016).

    Article 

    Google Scholar
     

  • 7.

    Senanayake, I. P., Welivitiya, W. & Nadeeka, P. M. Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Clim. 5, 19–35 (2013).

    Article 

    Google Scholar
     

  • 8.

    Yang, J. et al. Green and cool roofs’ urban heat island mitigation potential in tropical climate. Sol. Energy 173, 597–609 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Litardo, J. et al. Urban Heat Island intensity and buildings’ energy needs in Duran, Ecuador: Simulation studies and proposal of mitigation strategies. Sustain. Cities Soc. 62, 102387 (2020).

    Article 

    Google Scholar
     

  • 10.

    Grimmond, S. U. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 173, 83–88 (2007).

    Article 

    Google Scholar
     

  • 11.

    Zhou, X. & Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 635, 1467–1476 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Singh, P., Kikon, N. & Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 32, 100–114 (2017).

    Article 

    Google Scholar
     

  • 13.

    Aghamohammadi, N., Ramakreshnan, L., Fong, C. S. & Sulaiman, N. M. Urban Heat Island, contributing factors, public responses and mitigation approaches in the tropical context of Malaysia. Urban Heat Island Mitigat. 2021, 107–121 (2021).

    Article 

    Google Scholar
     

  • 14.

    Kabano, P., Lindley, S. & Harris, A. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc. Urban Plan. 206, 103989 (2021).

    Article 

    Google Scholar
     

  • 15.

    Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Rizwan, A. M., Dennis, L. Y. & Chunho, L. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120–128 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Nuruzzaman, M. Urban heat island: Causes, effects and mitigation measures—a review. Int. J. Environ. Monit. Anal. 3, 67–73 (2015).


    Google Scholar
     

  • 18.

    Weng, Q., Lu, D. & Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89, 467–483 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Stewart, I. & Oke, T. Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layer. In Eighth Symposium on Urban Environment, Phoenix, AZ 2009 (2009).

  • 20.

    Shastri, H., Barik, B., Ghosh, S., Venkataraman, C. & Sadavarte, P. Flip flop of day-night and summer-winter surface urban heat island intensity in India. Sci. Rep. 7, 1–8 (2017).

    Article 

    Google Scholar
     

  • 21.

    Hu, Y. et al. Comparison of surface and canopy urban heat islands within megacities of eastern China. ISPRS J. Photogramm. Remote. Sens. 156, 160–168 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Ayanlade, A. & Jegede, O. Evaluation of the intensity of the daytime surface urban heat island: How can remote sensing help?. Int. J. Image Data Fusion 6, 348–365 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Sobrino, J. A., Li, Z.-L., Stoll, M. P. & Becker, F. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 32, 243–253 (1994).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Zhao, S., Qin, Q., Yang, Y., Xiong, Y. & Qiu, G. Comparison of two split-window methods for retrieving land surface temperature from MODIS data. J. Earth Syst. Sci. 118, 345 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Chatterjee, R. S., Singh, N., Thapa, S., Sharma, D. & Kumar, D. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. Int. J. Appl. Earth Obs. Geoinf. 58, 264–277. https://doi.org/10.1016/j.jag.2017.02.017 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Pandya, M. R. et al. Retrieval of land surface temperature from the Kalpana-1 VHRR data using a single-channel algorithm and its validation over western India. ISPRS J. Photogramm. Remote. Sens. 94, 160–168. https://doi.org/10.1016/j.isprsjprs.2014.05.004 (2014).

    Article 

    Google Scholar
     

  • 27.

    Wang, N. et al. Evaluation and comparison of hyperspectral temperature and emissivity separation methods influenced by sensor spectral properties. Int. J. Remote Sens. 40, 1693–1708. https://doi.org/10.1080/01431161.2018.1484963 (2019).

    Article 

    Google Scholar
     

  • 28.

    Jacob, F. et al. Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model. Remote Sens. Environ. 198, 160–172. https://doi.org/10.1016/j.rse.2017.06.006 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Borel, C. C. & Tuttle, R. F. In 2011 Aerospace Conference. 1–14.

  • 30.

    Kumari, B. et al. Longitudinal study of land surface temperature (LST) using mono-and split-window algorithms and its relationship with NDVI and NDBI over selected metro cities of India. Arab. J. Geosci. 13, 1–19 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Abdul Athick, A. S. M., Shankar, K. & Naqvi, H. R. Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data Brief 27, 104773. https://doi.org/10.1016/j.dib.2019.104773 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Qin, Z., Karnieli, A. & Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 22, 3719–3746. https://doi.org/10.1080/01431160010006971 (2001).

    Article 

    Google Scholar
     

  • 33.



  • Read More:Variations in urban land surface temperature intensity over four cities in different

    Subscribe
    Notify of
    guest
    0 Comments
    Inline Feedbacks
    View all comments