Genomic variation from an extinct species is retained in the extant radiation following

0


  • Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685–706 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).


    Google Scholar
     

  • Vonlanthen, P. et al. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–362 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Seehausen, O. Conservation: losing biodiversity by reverse speciation. Curr. Biol. 16, R334–R337 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Seehausen, O., Takimoto, G., Roy, D. & Jokela, J. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol. Ecol. 17, 30–44 (2008).

    PubMed 

    Google Scholar
     

  • Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).

  • Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 11 (2017).


    Google Scholar
     

  • Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barlow, A. et al. Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. 2, 1563–1570 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhlwilm, M., Han, S., Sousa, V. C., Excoffier, L. & Marques-Bonet, T. Ancient admixture from an extinct ape lineage into bonobos. Nat. Ecol. Evol. 3, 957–965 (2019).

    PubMed 

    Google Scholar
     

  • Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. USA 115, E2566–E2574 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ottenburghs, J. Ghost introgression: spooky gene flow in the distant past. BioEssays 42, 2000012 (2020).


    Google Scholar
     

  • Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  • Rundle, H. D. & Nosil, P. Ecological speciation. Ecol. Lett. 8, 336–352 (2005).


    Google Scholar
     

  • Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).

  • Yeaman, S. & Whitlock, M. C. The genetic architecture of adaptation under migration–selection balance. Evolution 65, 1897–1911 (2011).

    PubMed 

    Google Scholar
     

  • Ghosh, S. M. & Joshi, A. Evolution of reproductive isolation as a by-product of divergent life-history evolution in laboratory populations of Drosophila melanogaster. Ecol. Evol. 2, 3214–3226 (2012).


    Google Scholar
     

  • Seehausen, O., van Alphen, J. J. M. & Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811 (1997).

    CAS 

    Google Scholar
     

  • Taylor, E. B. et al. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol. Ecol. 15, 343–355 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Grant, P. R. & Grant, B. R. Hybridization increases population variation during adaptive radiation. Proc. Natl. Acad. Sci. USA 116, 23216–23224 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kagawa, K. & Takimoto, G. Hybridization can promote adaptive radiation by means of transgressive segregation. Ecol. Lett. 21, 264–274 (2018).

    PubMed 

    Google Scholar
     

  • Feller, A. F. et al. Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids. Ecol. Evol. 10, 7445–7462 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfennig, K. S., Kelly, A. L. & Pierce, A. A. Hybridization as a facilitator of species range expansion. Proc. R. Soc. B https://doi.org/10.1098/rspb.2016.1329 (2016).

  • Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–227 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Hudson, A. G., Vonlanthen, P., Bezault, E. & Seehausen, O. Genomic signatures of relaxed disruptive selection associated with speciation reversal in whitefish. BMC Evol. Biol. 13, 17 (2013).


    Google Scholar
     

  • Hudson, A. G., Vonlanthen, P. & Seehausen, O. Rapid parallel adaptive radiations from a single hybridogenic ancestral population. Proc. R. Soc. B 278, 58–66 (2011).

    PubMed 

    Google Scholar
     

  • Jacobs, A. et al. Rapid niche expansion by selection on functional genomic variation after ecosystem recovery. Nat. Ecol. Evol. 3, 77–86 (2019).

    PubMed 

    Google Scholar
     

  • Steinmann, P. Monographie der schweizerischen Koregonen. Beitrag zum problem der entstehung neuer Arten. Schweiz. Z. Hydrol. 12, 340–491 (1950).


    Google Scholar
     

  • Selz, O. M., Donz, C. J., Vonlanthen, P. & Seehausen, O. A taxonomic revision of the whitefish of lakes Brienz and Thun, Switzerland, with descriptions of four new species (Teleostei, Coregonidae). Zookeys 989, 79–162 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, A. G., Lundsgaard-Hansen, B., Lucek, K., Vonlanthen, P. & Seehausen, O. Managing cryptic biodiversity: fine-scale intralacustrine speciation along a benthic gradient in Alpine whitefish (Coregonus spp.). Evol. Appl. 10, 251–266 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doenz, C. J., Bittner, D., Vonlanthen, P., Wagner, C. E. & Seehausen, O. Rapid buildup of sympatric species diversity in Alpine whitefish. Ecol. Evol. 8, 9398–9412 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vonlanthen, P. et al. Divergence along a steep ecological gradient in lake whitefish (Coregonus sp.). J. Evol. Biol. 22, 498–514 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Feulner, P. G. D. & Seehausen, O. Genomic insights into the vulnerability of sympatric whitefish species flocks. Mol. Ecol. 28, 615–629 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. Genes Genomes Genet. 8, 551–566 (2018).


    Google Scholar
     

  • Wahl, B. & Loffler, H. Influences on the natural reproduction of whitefish (Coregonus lavaretus) in Lake Constance. Can. J. Fish. Aquat. Sci. 66, 547–556 (2009).


    Google Scholar
     

  • Nümann, W. The Bodensee: effects of exploitation and eutrophication on the Salmonid community. J. Fish. Res. Board Can. 29, 833–884 (1972).


    Google Scholar
     

  • Deufel, J., Löffler, H. & Wagner, B. Auswirkungen der eutrophierung und anderer anthropogener einflüsse auf die laichplätze einiger Bodensee-Fischarten. Österr. Fisch.39, 325–336 (1986).


    Google Scholar
     

  • Straile, D. & Geller, W. Crustacean zooplankton in Lake Constance from 1920 to 1995: response to eutrophication and re-oligotrophication. Adv. Limnol. 58, 255–274 (1998).


    Google Scholar
     

  • Eby, L. A., Crowder, L. B., McClellan, C. M., Peterson, C. H. & Powers, M. J. Habitat degradation from intermittent hypoxia: impacts…



  • Read More:Genomic variation from an extinct species is retained in the extant radiation following

    Subscribe
    Notify of
    guest
    0 Comments
    Inline Feedbacks
    View all comments